JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Serum Cytokines as Biomarkers of Early Trypanosoma cruzi infection by Congenital Exposure.

Trypanosoma cruzi, the causing agent of Chagas disease, leads to an activation of the immune system in congenitally infected infants. In this study, we measured a set of cytokines/chemokines and the levels of parasitemia by quantitative PCR in the circulation of neonates born to T. cruzi-infected mothers to evaluate the predictive value of these mediators as biomarkers of congenital transmission. We conducted a retrospective cohort study of 35 infants with congenital T. cruzi infection, of which 15 and 10 infants had been diagnosed by detection of parasites by microscopy in the first and sixth month after delivery, respectively, and the remaining 10 had been diagnosed by the presence of T. cruzi-specific Abs at 10-12 mo old. Uninfected infants born to either T. cruzi-infected or uninfected mothers were also evaluated as controls. The plasma levels of IL-17A, MCP-1, and monokine induced by IFN-γ were increased in infants congenitally infected with T. cruzi, even before they developed detectable parasitemia or seroconversion. Infants diagnosed between 6 and 12 mo old also showed increased levels of IL-6 and IL-17F at 1 mo of age. Conversely, infants who did not develop congenital T. cruzi infection had higher levels of IFN-γ than infected infants born to uninfected mothers. Monokine induced by IFN-γ, MCP-1, and IFN-γ production induced in T. cruzi-infected infants correlated with parasitemia, whereas the plasma levels of IL-17A, IL-17F, and IL-6 were less parasite load dependent. These findings support the existence of a distinct profile of cytokines and chemokines in the circulation of infants born to T. cruzi-infected mothers, which might predict congenital infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app