JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CD275-Independent IL-17-Producing T Follicular Helper-like Cells in Lymphopenic Autoimmune-Prone Mice.

T cells undergo homeostatic expansion and acquire an activated phenotype in lymphopenic microenvironments. Restoration of normal lymphocyte numbers typically re-establishes normal homeostasis, and proinflammatory cytokine production returns to baseline. Mice deficient in guanine nucleotide exchange factor RasGRP1 exhibit dysregulated homeostatic expansion, which manifests as lymphoproliferative disease with autoantibody production. Our previous work revealed that autoreactive B cells lacking RasGRP1 break tolerance early during development, as well as during germinal center responses, suggesting that T cell-independent and T cell-dependent mechanisms are responsible. Examination of whether a particular T cell subset is involved in the breach of B cell tolerance revealed increased Th17 cells in Rasgrp1-deficient mice relative to control mice. Rasgrp1-deficient mice lacking IL-17R had fewer germinal centers, and germinal centers that formed contained fewer autoreactive B cells, suggesting that IL-17 signaling is required for a break in B cell tolerance in germinal centers. Interestingly, a fraction of Th17 cells from Rasgrp1-deficient mice were CXCR5(+) and upregulated levels of CD278 coordinate with their appearance in germinal centers, all attributes of T follicular helper cells (Tfh17). To determine whether CD278-CD275 interactions were required for the development of Tfh17 cells and for autoantibody, Rasgrp1-deficient mice were crossed with CD275-deficient mice. Surprisingly, mice deficient in RasGRP1 and CD275 formed Tfh17 cells and germinal centers and produced similar titers of autoantibodies as mice deficient in only RasGRP1. Therefore, these studies suggest that requirements for Tfh cell development change in lymphopenia-associated autoimmune settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app