Add like
Add dislike
Add to saved papers

Selection of Amikacin Hyper-Resistant Pseudomonas aeruginosa After Stepwise Exposure to High Amikacin Concentrations.

Aerosolized amikacin reaches high concentrations in lung fluids, which are well above the minimum inhibitory concentrations (MICs) of resistant strains of Pseudomonas aeruginosa. However, P. aeruginosa can gain resistance to amikacin through different cumulative mechanisms; amikacin MICs are seldom reported beyond values of 1,000 μg/ml, as tested in clinical microbiology assays. To assess how high amikacin MICs can be reached by graded exposure, four amikacin-resistant P. aeruginosa isolates were grown in a 4-step increased exposure to amikacin; derivative strains were further characterized by measuring their comparative growth rate, biofilm-forming ability, and susceptibility to other antibiotics. In addition, the mechanism underlying the MIC increase was assessed phenotypically, using a set of 12 aminoglycoside disks, and measuring the effect of Phe-Arg-β-naphthylamide, an efflux pump inhibitor. Graded exposure to amikacin increased MICs of resistant strains up to 10,000-20,000 μg/ml, without apparent fitness cost, and having variable consequences on their biofilm-forming ability, and on their susceptibility to other antibiotics. Decreased permeability may have contributed to hyper-resistance, although evidence was inconclusive and variable between strains. Amikacin-resistant P. aeruginosa is able to gain in vitro hyper-resistance with minimal changes in the specific phenotypes that were tested; the ability to achieve high-level amikacin (AMK) resistance may confound the clinical utility of this aerosolized AMK, but clinical data would be required to assess this.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app