Add like
Add dislike
Add to saved papers

Gradual Height Decrease of Augmented Vertebrae after Vertebroplasty at the Thoracolumbar Junction.

OBJECTIVE: Vertebroplasty is an effective treatment for vertebral compression fracture, but may progress gradual vertebral height decrease in spite of vertebroplasty. Gradual vertebral height decrease also may induce aggravation of kyphotic change without severe pain. The purpose of this study was to evaluate risk factors for gradual vertebral height decrease in the absence of recurrent severe back pain.

METHODS: A retrospective analysis was performed on 44 patients who were diagnosed with a first osteoporotic compression fracture at a single level at the thoracolumbar junction. All patients were taken vertebroplasty. Possible risk factors for gradual vertebral height decrease, such as sex, age, bone mineral density, body mass index, level of compression fracture, volume of injected cement, cement leakage into disc space, and air clefts within fractured vertebrae, were analyzed.

RESULTS: Gradual vertebral height decrease of augmented vertebrae occurred commonly when more than 4 cc of injected cement was used, and when air clefts within fractured vertebrae were seen on admission. In addition, the sagittal Cobb angle more commonly increased during the follow-up period in such cases.

CONCLUSION: Injection of more than 4 cc of cement during vertebroplasty and air cleft within fractured vertebrae on admission induced gradual vertebral height decrease in augmented vertebrae. Thus, longer follow-up will be needed in such cases, even when patients do not complain of recurrent severe back pain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app