Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Phosphodiesterase 5/protein kinase G signal governs stemness of prostate cancer stem cells through Hippo pathway.

Cancer Letters 2016 August 2
Cancer stem cells (CSC) are critical for initiation, metastasis, and relapse of cancers, however, the underlying mechanism governing stemness of CSC remains unknown. Herein, we have investigated the roles of phosphodiesterase 5 (PDE5) in stemness of prostate cancer cells. Both PDE5 and WW domain-containing transcription regulator protein-1 (TAZ), a core effector of Hippo pathway, are highly expressed in the PC3-derived cancer stem cells (PCSC). Either TAZ knockdown or inhibition of PDE5 activity attenuated colony formation, altered expression patterns of stem cell markers, and enhanced cisplatin cytotoxicity, resulting in attenuation of stemness in PCSC. In addition, inhibition of PDE5 activity by its specific inhibitors activates cGMP-dependent protein kinase G (PKG), which in turn induces MST/LATS kinases, resulting in cytosolic degradation of TAZ and activation of Hippo pathway. Accordingly, knockdown of TAZ almost completely abolished PDE5 inhibitor-induced attenuation in stemness in cultured PCSC, whereas knockdown of TAZ not only abolished PDE5 inhibitor-induced attenuation in stemness but also facilitated PDE5 inhibitor-induced trans-differentiation in PCSC xenografts. Together, the present study has uncovered that PDE/cGMP/PKG signal targets to Hippo/TAZ pathway in maintaining stemness of PCSC, and suggested that PDE5 inhibitors in combination with chemotherapeutic agents could effectively prevent initiation, metastasis, and relapse of prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app