Add like
Add dislike
Add to saved papers

Resting multilayer 2D speckle-tracking TTE for detection of ischemic segments confirmed by invasive FFR part-2, using post-systolic-strain-index and time from aortic-valve-closure to regional peak longitudinal-strain.

PURPOSE: This study evaluated the post-systolic strain index (PSI), and the time interval between aortic valve closure (AVC) and regional peak longitudinal strain (PLS), measured by transthoracic echocardiography (TTE), for detection of left ventricular (LV) myocardial ischemic segments confirmed by invasive fractional flow reserve (FFR).

MATERIALS AND METHODS: 39 stable patients (32 males; 65.8±11.9years) with 46 coronary arteries at ≥50% stenosis on invasive coronary angiography underwent 2D speckle tracking TTE (Vivid E9, GE Healthcare) and invasive FFR measurements. PSI, AVC and regional PLS in each LV segment were calculated.

RESULTS: FFR ≤0.80 was detected in 27 LV segments. There were no significant differences between segments supplied by FFR ≤0.80 and FFR >0.80 vessels in either PSI or the time interval between AVC and regional PLS. To identify LV segments±FFR ≤0.80, the receiver operator characteristic (ROC) curves for PSI, and the time interval between AVC and regional PLS had areas under the curve (AUC) values of 0.58 and 0.57, respectively, with best cut-off points of 12% (sensitivity 70.4%, specificity 57.9%) and 88ms (sensitivity 70.4%, specificity 52.6%), respectively, but the AUCs were not statistically significant.

CONCLUSION: In stable coronary artery disease patients with ≥50% coronary artery stenosis, measurement of PSI, and the time interval between AVC and regional PLS, on resting TTE, enabled the identification of LV segments with FFR ≤0.80 using each appropriate threshold for PSI, and the time interval between AVC and regional PLS, with reasonable diagnostic accuracy. However, the AUC values were not statistically significant.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app