Add like
Add dislike
Add to saved papers

Structural markers of the evolution of whey protein isolate powder during aging and effects on foaming properties.

The market for dairy powders, including high added-value products (e.g., infant formulas, protein isolates) has increased continuously over the past decade. However, the processing and storage of whey protein isolate (WPI) powders can result in changes in their structural and functional properties. It is therefore of great importance to understand the mechanisms and to identify the structural markers involved in the aging of WPI powders to control their end use properties. This study was performed to determine the effects of different storage conditions on protein lactosylations, protein denaturation in WPI, and in parallel on their foaming and interfacial properties. Six storage conditions involving different temperatures (θ) and water activities (aw) were studied for periods of up to 12mo. The results showed that for θ≤20°C, foaming properties of powders did not significantly differ from nonaged whey protein isolates (reference), regardless of the aw. On the other hand, powders presented significant levels of denaturation/aggregation and protein modification involving first protein lactosylation and then degradation of Maillard reaction products, resulting in a higher browning index compared with the reference, starting from the early stage of storage at 60°C. These changes resulted in a higher foam density and a slightly better foam stability (whisking) at 6mo. At 40°C, powders showed transitional evolution. The findings of this study will make it possible to define maximum storage durations and to recommend optimal storage conditions in accordance with WPI powder end-use properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app