Add like
Add dislike
Add to saved papers

Maternal exposure to high-fat and high-fructose diet evokes hypoadiponectinemia and kidney injury in rat offspring.

BACKGROUND: Maternal exposure to overnutrition during fetal development contributes to metabolic and renal damage in offspring. Adiponectin plays a protective role against obesity-related renal injury. However, role of adiponectin in renal injury of offspring exposed to maternal overnutrition remains unknown. We addressed the issue.

METHODS: Female Sprague-Dawley rats were fed either a standard (N) or a high-fat and high-fructose (HFF)-diet for 6 weeks before mating, and kept each diet during the gestation and lactation period. After 4 weeks postpartum, all the offspring were fed N diet, and followed by 12 weeks. Kidney weight, urinary albumin excretion, blood pressure, and blood chemistry, including adiponectin and malondialdehyde, a marker of oxidative stress, were evaluated in the offspring.

RESULTS: Compared with N-offspring, serum adiponectin levels of 1-day- and 4-week-old HFF-offspring were significantly lower, the latter of which was inversely associated with malondialdehyde. Kidney weight was significantly decreased in 1-day-old HFF-offspring, whereas increased in 4-week-old HFF-offspring. Urinary albumin excretion levels of HFF-offspring at 8, 12, and 16-week old were significantly higher than those of N-offspring at the same age, whose levels at 16-week old were inversely correlated with plasma adiponectin. Compared with N-offspring, HFF-offspring at 16-week old exhibited glomerulosclerosis, hyperglycemia, and high mean blood pressure associated with reduced podocin and increased transforming growth factor-β1 expression in the kidneys.

CONCLUSIONS: Our present study suggests that exposure to maternal HFF-diet during fetal and early postnatal development induces hypoadiponectinemia in offspring, which might cause renal injury and metabolic derangements later in life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app