Add like
Add dislike
Add to saved papers

Long-term administration of ranolazine attenuates diastolic dysfunction and adverse myocardial remodeling in a model of heart failure with preserved ejection fraction.

BACKGROUND: To investigate the effects of chronic administration of ranolazine (RAN) on experimental model of heart failure with preserved ejection fraction.

METHODS: Seven-weeks old Dahl salt-sensitive rats were fed a high salt diet for 5weeks to induce hypertension. Afterwards, rats continued with a high salt diet and were administered either with vehicle or RAN (20mg/kg/die, ip) for the following 8weeks. Control rats were maintained on a low salt diet.

RESULTS: While systolic parameters were not altered, diastolic parameters were changed in high salt animals. Hemodynamic analysis showed a decreased dP/dt min, increased LVEDP, longer time constant and steeper slope of the end-diastolic pressure-volume relationship. Treatment with RAN attenuated these alterations and determined a reduction in mortality. Additionally, the magnitude of myocardial hypertrophy and activation of PI3K/Akt pathway were reduced. Alteration in diastolic compliance as a consequence of elevated myocardial stiffness was confirmed by an increase of collagen deposition and activation of pro-fibrotic TGF-β/SMAD3/CTGF signaling. These effects were counteracted by RAN. High salt rats had a decrease in SERCA2 and an increase in Na(+)/Ca(2+) exchanger (NCX). Treatment with RAN reduced NCX expression and determined an increment of SERCA2. Moreover, the levels of nitrotyrosine and oxidized dyhydroethidium were higher in high salt rats. RAN induced a decrement of oxidative stress, supporting the concept that reduction in ROS may mediate beneficial effects.

CONCLUSIONS: Our findings support the possibility that diastolic dysfunction can be attenuated by RAN, indicating its ability to affect active relaxation and passive diastolic compliance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app