Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of a shootin1 isoform expressed in peripheral tissues.

Shootin1 is a brain-specific cytoplasmic protein involved in neuronal polarity formation and axon outgrowth. It accumulates at the leading edge of axonal growth cones, where it mediates the mechanical coupling between F-actin retrograde flow and cell adhesions as a clutch molecule, thereby producing force for axon outgrowth. In this study, we report a novel splicing isoform of shootin1 which is expressed not only in the brain but also in peripheral tissues. We have renamed the brain-specific shootin1 as shootin1a and termed the novel isoform as shootin1b. Immunoblot and immunohistochemical analyses with a shootin1b-specific antibody revealed that shootin1b is distributed in various mouse tissues including the lung, liver, stomach, intestines, spleen, pancreas, kidney and skin. Interestingly, shootin1b immunoreactivity was widely detected in epithelial cells that constitute simple and stratified epithelia; in some cells, it colocalized with E-cadherin and cortactin at cell-cell contact sites. Shootin1b also localized in dendritic cells in the spleen. These results suggest that shootin1b may function in various peripheral tissues including epithelial cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app