Add like
Add dislike
Add to saved papers

Acute and subacute toxicity studies of CMICE-013, a novel iodinated rotenone-based myocardial perfusion tracer, in Sprague Dawley rats and Gottingen minipigs.

PURPOSE: Extensive acute and subacute toxicities studies are required to evaluate the toxicological profile of the novel cardiac perfusion imaging tracer (123)I-CMICE-013 to support applications for clinical trials.

METHODS: Sprague-Dawley rats and Gottingen minipigs received injections of non-radioactive 127I-CMICE-013 at two dosage levels of 1 and 5 μg/kg, and vehicle buffer as control. In the acute toxicity studies, each animal was injected on two occasions 24 h apart and then underwent a 14-day recovery period; in the subacute study, animals received daily injections for 14 days continuously. The health status and mortality of test animals were monitored daily and body weight, food consumption, physiological and biochemical parameters were measured at various time points during the study. Animals were euthanized at the end of the studies and dissected for pathologic examination of organs and tissues.

RESULTS: The acute and subacute administrations of injections of the non-radioactive CMICE-013 in rats and minipigs were well tolerated. Little to no dosing-related adverse effects were observed in animal body and organ weights, hematology, coagulation, clinical chemistry, urinalysis, ophthalmoscopy, electrocardiograms, heart rates, blood pressure, macroscopic and microscopic examination of the preserved animal tissues including the brain.

CONCLUSION: The lack of adverse effects from acute and subacute dosing suggest that the CMICE-013 injection solution has a reasonable safety margin within the designed concentration range to be utilized in imaging applications. The dosage level of 5 μg/kg was considered the no adverse effect level for both rats and minipigs based on our acute and subacute studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app