Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Alpha-synuclein and familial variants affect the chain order and the thermotropic phase behavior of anionic lipid vesicles.

Alpha-synuclein (aSN) is a presynaptic protein with a pathological role in Parkinson's disease (PD). The mutants A30P, E46K and A53T are involved in PD early-onset forms. aSN is natively unfolded but can self-assemble to oligomers and fibrils and binds anionic membranes in a helical conformation. We study the influence of wild-type (wt) aSN and familial variants on the chain order and thermotropic phase behavior of anionic dimyristoylphosphatidylglycerol (DMPG) bilayers by using electron spin resonance and calorimetry, respectively. The alpha-helical conformation of the proteins in the membrane-bound state is assessed by circular dichroism thermal scans. wt and mutated aSN upon binding to fluid DMPG vesicles progressively increase chain order. Lipid:protein molar binding stoichiometries correspond to 50 for A30P, 35-36 for aSN and A53T, 30 for E46K. The temperature range over which the variants assume the α-helical fold correlates directly with the density of proteins on vesicle surfaces. All variants preserve the characteristic chain flexibility gradient and impart motional restriction in the lipid chain. This is evident at the first CH2 segments and is markedly reduced at the chain termini, disappearing completely for A30P. The proteins slightly reduce DMPG main transition temperature, revealing preferential affinity for the fluid phase, and broaden the transition, promoting gel-fluid phase coexistence. The overall results are consistent with protein surface association in which the degree of binding correlates with the degree of folding and perturbation of the membrane bilayer. However, the degree of binding of monomer to membrane does not correlate directly with aSN toxicity in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app