Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system.

BACKGROUND: Heterologous production of hydrolytic enzymes is important for green and white biotechnology since these enzymes serve as efficient biocatalysts for the conversion of a wide variety of raw materials into value-added products. Lactic acid bacteria are interesting cell factories for the expression of hydrolytic enzymes as many of them are generally recognized as safe and require only a simple cultivation process. We are studying a potentially food-grade expression system for secretion of hydrolytic enzymes into the culture medium, since this enables easy harvesting and purification, while allowing direct use of the enzymes in food applications.

RESULTS: We studied overexpression of a chitosanase (CsnA) and a β-mannanase (ManB), from Bacillus licheniformis and Bacillus subtilis, respectively, in Lactobacillus plantarum, using the pSIP system for inducible expression. The enzymes were over-expressed in three forms: without a signal peptide, with their natural signal peptide and with the well-known OmpA signal peptide from Escherichia coli. The total production levels and secretion efficiencies of CsnA and ManB were highest when using the native signal peptides, and both were reduced considerably when using the OmpA signal. At 20 h after induction with 12.5 ng/mL of inducing peptide in MRS media containing 20 g/L glucose, the yields and secretion efficiencies of the proteins with their native signal peptides were 50 kU/L and 84% for ManB, and 79 kU/L and 56% for CsnA, respectively. In addition, to avoid using antibiotics, the erythromycin resistance gene was replaced on the expression plasmid with the alanine racemase (alr) gene, which led to comparable levels of protein production and secretion efficiency in a suitable, alr-deficient L. plantarum host.

CONCLUSIONS: ManB and CsnA were efficiently produced and secreted in L. plantarum using pSIP-based expression vectors containing either an erythromycin resistance or the alr gene as selection marker.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app