Add like
Add dislike
Add to saved papers

Untangling Knots Via Reaction-Diffusion Dynamics of Vortex Strings.

We introduce and illustrate a new approach to the unknotting problem via the dynamics of vortex strings in a nonlinear partial differential equation of reaction-diffusion type. To untangle a given knot, a Biot-Savart construction is used to initialize the knot as a vortex string in the FitzHugh-Nagumo equation. Remarkably, we find that the subsequent evolution preserves the topology of the knot and can untangle an unknot into a circle. Illustrative test case examples are presented, including the untangling of a hard unknot known as the culprit. Our approach to the unknotting problem has two novel features, in that it applies field theory rather than particle mechanics and uses reaction-diffusion dynamics in place of energy minimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app