Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes.

Nano Letters 2016 June 9
We use individual gold nanorods as pointlike detectors for the intrinsic dynamics of an oscillating biological system. We chose the pattern forming MinDE protein system from Escherichia coli (E. coli), a prominent example for self-organized chemical oscillations of membrane-associated proteins that are involved in the bacterial cell division process. Similar to surface plasmon resonance (SPR), the gold nanorods report changes in their protein surface coverage without the need for fluorescence labeling, a technique we refer to as NanoSPR. Comparing the dynamics for fluorescence labeled and unlabeled proteins, we find a reduction of the oscillation period by about 20%. The absence of photobleaching allows us to investigate Min proteins attaching and detaching from lipid coated gold nanorods with an unprecedented bandwidth of 100 ms time resolution and 1 h observation time. The long observation reveals small changes of the oscillation period over time. Averaging many cycles yields the precise wave profile that exhibits the four phases suggested in previous reports. Unexpected from previous fluorescence-based studies, we found an immobile static protein layer not dissociating during the oscillation cycle. Hence, NanoSPR is an attractive label-free real-time technique for the local investigation of molecular dynamics with high observation bandwidth. It gives access to systems, which cannot be fluorescently labeled, and resolves local dynamics that would average out over the sensor area used in conventional SPR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app