Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation.

Chronic kidney disease is associated with progressive renal fibrosis, where perivascular cells give rise to the majority of α-smooth muscle actin (α-SMA) positive myofibroblasts. Here we sought to identify pericytic miRNAs that could serve as a target to decrease myofibroblast formation. Kidney fibrosis was induced in FoxD1-GC;Z/Red-mice by unilateral ureteral obstruction followed by FACS sorting of dsRed-positive FoxD1-derivative cells and miRNA profiling. MiR-132 selectively increased 21-fold during pericyte-to-myofibroblast formation, whereas miR-132 was only 2.5-fold up in total kidney lysates (both in obstructive and ischemia-reperfusion injury). MiR-132 silencing during obstruction decreased collagen deposition (35%) and tubular apoptosis. Immunohistochemistry, Western blot, and qRT-PCR confirmed a similar decrease in interstitial α-SMA(+) cells. Pathway analysis identified a rate-limiting role for miR-132 in myofibroblast proliferation that was confirmed in vitro. Indeed, antagomir-132-treated mice displayed a reduction in the number of proliferating Ki67(+) interstitial myofibroblasts. Interestingly, this was selective for the interstitial compartment and did not impair the reparative proliferation of tubular epithelial cells, as evidenced by an increase in Ki67(+) epithelial cells, as well as increased phospho-RB1, Cyclin-A and decreased RASA1, p21 levels in kidney lysates. Additional pathway and gene expression analyses suggest miR-132 coordinately regulates genes involved in TGF-β signaling (Smad2/Smad3), STAT3/ERK pathways, and cell proliferation (Foxo3/p300). Thus, silencing miR-132 counteracts the progression of renal fibrosis by selectively decreasing myofibroblast proliferation and could potentially serve as a novel antifibrotic therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app