Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Association Between Combined Presence of Hepatitis C Virus and Polymorphisms in Different Genes With Toxicities of Methotrexate and 6-Mercaptopurine in Children With Acute Lymphoblastic Leukemia.

BACKGROUND: The aim of the present study is to determine the correlation of hepatitis C virus (HCV) infection and polymorphisms in different genes with toxicity of either methotrexate (MTX) or 6-mercaptopurine (6-MP) administered to children with acute lymphoblastic leukemia (ALL).

PROCEDURE: One hundred children with low-risk ALL, who were treated according to the St. Jude Total therapy XV, were recruited. The recruited children were receiving MTX and 6-MP during maintenance phase. Patients were excluded from the study if they had other types of leukemia. Genotyping analyses for the thiopurine methyltransferase (TPMT), methylenetetrahydrofolate reductase (MTHFR), and glutathione S-transferase (GST) genes were performed using a combination of polymerase chain reaction (PCR) and PCR-RFLP (where RFLP is restriction fragment length polymorphism) protocols. Relevant clinical data on adverse drug reactions were collected objectively (blinded to genotypes) from the patient medical records.

RESULTS: There was a significant correlation between the combined presence of HCV and TPMT*3B G460A gene polymorphisms and grades 2-4 hepatotoxicity as aspartate aminotransferase (AST) elevation (P < 0.04). The same observation was seen when comparing either the presence of HCV alone or the presence of the gene polymorphism alone. A significant association between the combined presence of HCV and MTHFR C677T polymorphism and grades 2-4 hepatotoxicity as alanine aminotransferase (ALT), AST, and alkaline phosphatase (ALP) elevation was observed (P values <0.001, 0.02, and 0.001, respectively). The presence of HCV infection had a significant negative effect on hepatic transaminases.

CONCLUSIONS: The present data support a role for combining analysis of genetic variation in drug-metabolizing enzymes and the presence of HCV in the assessment of specific drugs toxicities in multiagent chemotherapeutic treatment regimens.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app