Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of the KCa3.1 channel contributes to traumatic scratch injury-induced reactive astrogliosis through the JNK/c-Jun signaling pathway.

Reactive astrogliosis is widely considered to contribute to pathogenic responses to stress and brain injury and to diseases as diverse as ischemia and neurodegeneration. We previously found that expression of the intermediate-conductance calcium-activated potassium channel (KCa3.1) involved in TGF-β-activated astrogliosis. In the present study, we investigated whether migration of cortical astrocytes following mechanical scratch injury involves the KCa3.1 channel, which contributes to Ca(2+)-mediated migration in other cells. We found that scratch injury increased the expression of KCa3.1 protein in reactive astrocytes. Application of the KCa3.1 blocker TRAM-34 decreased glial fibrillary acidic protein (GFAP) expression and slowed migration in a concentration-dependent manner. Application of the Ca(2+) chelators, EGTA and BAPTA-AM, also slowed the migration of astrocytes. Blockade or genetic deletion of KCa3.1 both slowed and dramatically reduced the scratch injuries induced the sharp rise in astrocytes Ca(2+) concentrations. The scratch injury-induced phosphorylation of JNK and c-Jun proteins was also attenuated both by blockade of KCa3.1 with TRAM-34 and in KCa3.1(-/-) astrocytes. Using KCa3.1 knockout mice, we further confirmed that deletion of KCa3.1 reduced expression of GFAP in an in vivo stab wound model. Taken together, our findings highlight a novel role for KCa3.1 in phenotypic modulation of reactive astrocytes and in astrocyte mobilization in response to mechanical stress, providing a potential target for therapeutic intervention in brain injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app