Add like
Add dislike
Add to saved papers

Wavelet-Based Analytical Algorithm for Solving Steady-State Concentration in Immobilized Glucose Isomerase of Packed-Bed Reactor Model.

Wavelet method is a recently developed tool in applied mathematics. The mathematical model of the steady-state immobilized enzyme electrodes is discussed. This theoretical model is based on one-dimensional heat conduction equations containing a non-linear term related to Michaelis-Menten kinetics. An efficient Chebyshev wavelet-based technique is applied to solve the non-linear diffusion equation for the steady-state condition. A simple expression of the substrate concentration is obtained as a function of the Thiele modulus [Formula: see text] and [Formula: see text](kinetic parameter). The wavelet results are compared with the numerical and HPM solutions and found to be in good agreement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app