Add like
Add dislike
Add to saved papers

Ex vivo assessment of testicular toxicity induced by carbendazim and iprodione, alone or in a mixture.

ALTEX 2016
To measure the testicular toxicity of two fungicides (carbendazim and iprodione), alone or in a mixture, we used a rat ex vivo model of seminiferous tubules, greatly reducing the number of rodents used, in accordance with the 3R rule (Replacement, Reduction, and Refinement). This model allows the representation of puberty, a critical life period with regard to endocrine disruptors. The cellular modifications were followed for three weeks through transcriptomic and proteomic profiling analysis. A quantitative and comparative method was developed to estimate how known pathways were disturbed by each substance. This pathway-driven analysis revealed a strong alteration of steroidogenesis and an impairment of meiosis in all cases, albeit the initial molecular events were different for both substances. The ex vivo cytogenetic analysis confirmed that both fungicides alter the course of the first meiotic prophase. In addition, the mixture of both substances triggered effects greater than the sum of their cumulative effects and compromised future sperm motility after a shorter time of exposure compared with the fungicides tested separately. The alliance of an ex vivo culture with "omics" strategies complemented with a physiological examination is a powerful combination of tools for testing substances, separately or in a mixture, for their testicular toxicity. In particular, proteomics allowed the identification of systematically differentially expressed proteins in the secretomes of exposed cultures, such as FUCO and PEBP1, two proteins linked with the motility and fertilizing ability of spermatozoa, respectively. These proteins may be potential biomarkers of testicular dysfunction and infertility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app