Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Multivariate eQTL mapping uncovers functional variation on the X-chromosome associated with complex disease traits.

Human Genetics 2016 July
Very few studies have investigated the associations between genetic polymorphisms and gene expression on the X-chromosome. This is a major bottleneck when conducting functional follow-up studies of trait-associated variants, as those identified in genome-wide association studies (GWAS). We used a multivariate approach to test the association between individual single nucleotide polymorphisms (SNPs) and exon expression levels measured in 356 Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) from the Geuvadis RNA sequencing project to identify SNPs associated with variation in gene expression on the X-chromosome, which we refer to as eSNPs. At an FDR of 5 %, we discovered 548 independent [linkage disequilibrium (LD) r (2) < 0.1] eSNPs on the X-chromosome. Of these, 35 were in LD (r (2) > 0.8) with previously published disease- or trait-associated variants identified through GWAS. One of the strongest eSNPs identified was rs35975601, which was associated with F8A1 expression (p value = 3 × 10(-20)) and was in LD with a type 1 diabetes risk variant. Additionally, we identified a number of genes for which eSNPs were in LD with multiple diseases or traits, including DNASE1L1 which was mapped to bilirubin levels, type 1 diabetes and schizophrenia. Our results also indicate that multivariate exon-level analysis provides a more powerful approach than univariate gene-level analysis, particularly when SNPs influence the expression of different exons with different magnitude and/or direction of effect. The associations identified in our study may provide new insights into the molecular process by which gene expression may contribute to trait variation or disease risk in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app