JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients.

Biometrics 2017 March
Joint modeling is increasingly popular for investigating the relationship between longitudinal and time-to-event data. However, numerical complexity often restricts this approach to linear models for the longitudinal part. Here, we use a novel development of the Stochastic-Approximation Expectation Maximization algorithm that allows joint models defined by nonlinear mixed-effect models. In the context of chemotherapy in metastatic prostate cancer, we show that a variety of patterns for the Prostate Specific Antigen (PSA) kinetics can be captured by using a mechanistic model defined by nonlinear ordinary differential equations. The use of a mechanistic model predicts that biological quantities that cannot be observed, such as treatment-sensitive and treatment-resistant cells, may have a larger impact than PSA value on survival. This suggests that mechanistic joint models could constitute a relevant approach to evaluate the efficacy of treatment and to improve the prediction of survival in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app