JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Potato tuber herbivory increases resistance to aboveground lepidopteran herbivores.

Oecologia 2016 September
Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato). Conversely, S. exigua leaf damage had no noticeable effect on belowground T. solanivora performance. Tuber infestation by T. solanivora induced systemic plant defenses and elevated resistance to aboveground herbivores. Lipoxygenase 3 (Lox3), which contributes to the synthesis of plant defense signaling molecules, had higher transcript abundance in T. solanivora-infested leaves and tubers than in equivalent control samples. Foliar expression of the hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (HQT) and 3-hydroxy-3-methylglutaryl CoA reductase I (HMGR1) genes, which are involved in chlorogenic acid and steroidal glycoalkaloid biosynthesis, respectively, also increased in response to tuber herbivory. Leaf metabolite profiling demonstrated the accumulation of unknown metabolites as well as the known potato defense compounds chlorogenic acid, α-solanine, and α-chaconine. When added to insect diet at concentrations similar to those found in potato leaves, chlorogenic acid, α-solanine, and α-chaconine all reduced S. exigua larval growth. Thus, despite the fact that tubers are a metabolic sink tissue, T. solanivora feeding elicits a systemic signal that induces aboveground resistance against S. exigua and S. frugiperda by increasing foliar abundance of defensive metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app