Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Proteome Changes during Transition from Human Embryonic to Vascular Progenitor Cells.

Human embryonic stem cells (hESCs) are promising in regenerative medicine (RM) due to their differentiation plasticity and proliferation potential. However, a major challenge in RM is the generation of a vascular system to support nutrient flow to newly synthesized tissues. Here we refined an existing method to generate tight vessels by differentiating hESCs in CD34(+) vascular progenitor cells using chemically defined media and growth conditions. We selectively purified these cells from CD34(-) outgrowth populations also formed. To analyze these differentiation processes, we compared the proteomes of the hESCs with those of the CD34(+) and CD34(-) populations using high resolution mass spectrometry, label-free quantification, and multivariate analysis. Eighteen protein markers validate the differentiated phenotypes in immunological assays; nine of these were also detected by proteomics and show statistically significant differential abundance. Another 225 proteins show differential abundance between the three cell types. Sixty-three of these have known functions in CD34(+) and CD34(-) cells. CD34(+) cells synthesize proteins implicated in endothelial cell differentiation and smooth muscle formation, which support the bipotent phenotype of these progenitor cells. CD34(-) cells are more heterogeneous synthesizing muscular/osteogenic/chondrogenic/adipogenic lineage markers. The remaining >150 differentially abundant proteins in CD34(+) or CD34(-) cells raise testable hypotheses for future studies to probe vascular morphogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app