Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Dependence of the structure and mechanics of metaphase chromosomes on oxidized cysteines.

Chromosome Research 2016 September
We have found that reagents that reduce oxidized cysteines lead to destabilization of metaphase chromosome folding, suggesting that chemically linked cysteine residues may play a structural role in mitotic chromosome organization, in accord with classical studies by Dounce et al. (J Theor Biol 42:275-285, 1973) and Sumner (J Cell Sci 70:177-188, 1984a). Human chromosomes isolated into buffer unfold when exposed to dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP). In micromanipulation experiments which allow us to examine the mechanics of individual metaphase chromosomes, we have found that the gel-like elastic stiffness of native metaphase chromosomes is dramatically suppressed by DTT and TCEP, even before the chromosomes become appreciably unfolded. We also report protein labeling experiments on human metaphase chromosomes which allow us to tag oxidized and reduction-sensitive cysteine residues. PAGE analysis using fluorescent labels shows a small number of labeled bands. Mass spectrometry analysis of similarly labeled proteins provides a list of candidates for proteins with oxidized cysteines involved in chromosome organization, notably including components of condensin I, cohesin, the nucleosome-interacting proteins RCC1 and RCC2, as well as the RNA/DNA-binding protein NONO/p54NRB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app