Add like
Add dislike
Add to saved papers

Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: A proteomic approach.

Enterococcus faecalis is a member of human gut microflora causing nosocomial infection involving biofilm formation. Ethyl methyl sulfonate induced mutants were analysed using crystal violet assay, SEM and CLSM microscopy which confirmed AK-E12 as biofilm efficient and AK-F6 as biofilm deficient mutants. Growth curve pattern revealed AK-E12 was fast growing whereas, AK-F6 was found slow growing mutant. 2D-Electrophorosis and MALDI-TOF analysis revealed over and underexpression of many translation-elongation associated proteins in mutants compared to wild type. Protein translation elongation factor G, translation elongation factor Tu and ribosomal subunit interface proteins were underexpressed and UTP-glucose-1-phosphate uridylyl transferase and cell division protein divIVA were overexpressed in AK-E12 as compared to wild type. In AK-F6, except 10 kDa chaperonin which was over-expressed other selected proteins were found to be suppressed. RT-PCR confirmed proteomic data except for the translation elongation factor G which showed contradictory data of proteome expression in AK-E12. Protein-protein interaction networks were constructed using STRING 10.0 which demonstrated strong connection of translation-elongation proteins with other proteins. Hence, it concludes from the data that translation elongation factors are important in transition of planktonic cells to biofilm cells in Enterococcus faecalis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app