JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Roles for ROS and hydrogen sulfide in the longevity response to germline loss in Caenorhabditis elegans.

In Caenorhabditis elegans, removing germ cells slows aging and extends life. Here we show that transcription factors that extend life and confer protection to age-related protein-aggregation toxicity are activated early in adulthood in response to a burst of reactive oxygen species (ROS) and a shift in sulfur metabolism. Germline loss triggers H2S production, mitochondrial biogenesis, and a dynamic pattern of ROS in specific somatic tissues. A cytoskeletal protein, KRI-1, plays a key role in the generation of H2S and ROS. These kri-1-dependent redox species, in turn, promote life extension by activating SKN-1/Nrf2 and the mitochondrial unfolded-protein response, respectively. Both H2S and, remarkably, kri-1-dependent ROS are required for the life extension produced by low levels of the superoxide-generator paraquat and by a mutation that inhibits respiration. Together our findings link reproductive signaling to mitochondria and define an inducible, kri-1-dependent redox-signaling module that can be invoked in different contexts to extend life and counteract proteotoxicity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app