CASE REPORTS
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Management of a Previously Treated, Calcified, and Dilacerated Maxillary Lateral Incisor: A Combined Nonsurgical/Surgical Approach Assisted by Cone-beam Computed Tomography.

Teeth with calcified canals, dilacerated roots, and associated large periradicular lesions involving both cortical plates pose a challenge to dentists. In addition to the nonsurgical endodontic treatment, such teeth may require surgical intervention with concomitant use of bone grafting materials and barrier techniques. These techniques, when combined with the use of a host modulating agent such as platelet-rich fibrin (PRF), may improve the chances of success. A 26-year-old woman was referred for dental treatment with a recurrence of an intraoral sinus tract 2 months after periradicular surgery in the upper anterior region. Clinical and radiographic examinations revealed a calcified and perforated maxillary left lateral incisor with a severely dilacerated root as well as an associated large radiolucent lesion surrounding the roots of the maxillary left central and lateral incisors. A cone-beam computed tomographic scan of the anterior maxilla showed erosion of the labial and palatal cortical plates in the same region. A calcified canal in the lateral incisor was negotiated up to the straight line portion of the canal. Periradicular surgery with root-end resection was performed, and root-end filling was performed with mineral trioxide aggregate. The perforation present on the middle third of the labial surface of the root was repaired with mineral trioxide aggregate, and the canal was cleaned, shaped, and obturated. A PRF scaffold was prepared and used with a collagen membrane and a freeze-dried bone allograft. Follow-up visits after 3 months, 6 months, and 1 year revealed satisfactory clinical and radiographic healing. The combined use of nonsurgical and surgical modes of treatment cannot be overemphasized in this case. The use of PRF along with a bone graft and a barrier membrane may have enhanced the speed of healing and the resolution of periradicular radiolucency by enhancing bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app