JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Pioglitazone increases PGC1-α signaling within chronically ischemic myocardium.

The peroxisome proliferator-activated receptor (PPAR)-γ drug pioglitazone (PIO) has been shown to protect tissue against oxidant stress. In a swine model of chronic myocardial ischemia, we tested whether PIO increases PGC1-α signaling and the expression of mitochondrial antioxidant peptides. Eighteen pigs underwent a thoracotomy with placement of a fixed constrictor around the LAD artery. At 8 weeks, diet was supplemented with either PIO (3 mg/kg) or placebo for 4 weeks. Regional myocardial function and blood flow were determined at the time of the terminal study. PGC1-α expression was quantified from nuclear membranes by gels and respiration, oxidant stress markers and proteomics by iTRAQ were determined from isolated mitochondria. In the chronically ischemic LAD region, wall thickening from the PIO and control groups was 42 ± 6 and 45 ± 5 %, respectively (NS) with no intergroup differences in basal blood flow (0.72 ± 0.04 versus 0.74 ± 0.04 ml/min g, respectively; NS). In the PIO group, the expression of nuclear bound PGC1-α was higher (11.3 ± 2.6 versus 4.4 ± 1.4 AU; P < 0.05) and the content of mitochondrial antioxidant peptides including superoxide dismutase 2, aldose reductase, glutathione S-transferase and thioredoxin reductase were greater than controls. Although isolated mitochondria from the PIO group showed lower state 3 respiration (102 ± 13 versus 161 ± 22 nmol/min mg; P < 0.05), no differences in oxidant stress were noted by protein carbonyl (1.7 ± 0.7 versus 1.1 ± 0.1 nmol/mg). Chronic pioglitazone does not reduce regional myocardial blood flow or function in a swine model of chronic myocardial ischemia, but may have an important role in increasing expression of antioxidant proteins through PGC1-α signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app