Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The mitochondrial calcium uniporter regulates breast cancer progression via HIF-1α.

Triple-negative breast cancer (TNBC) represents the most aggressive breast tumor subtype. However, the molecular determinants responsible for the metastatic TNBC phenotype are only partially understood. We here show that expression of the mitochondrial calcium uniporter (MCU), the selective channel responsible for mitochondrial Ca(2+) uptake, correlates with tumor size and lymph node infiltration, suggesting that mitochondrial Ca(2+) uptake might be instrumental for tumor growth and metastatic formation. Accordingly, MCU downregulation hampered cell motility and invasiveness and reduced tumor growth, lymph node infiltration, and lung metastasis in TNBC xenografts. In MCU-silenced cells, production of mitochondrial reactive oxygen species (mROS) is blunted and expression of the hypoxia-inducible factor-1α (HIF-1α) is reduced, suggesting a signaling role for mROS and HIF-1α, downstream of mitochondrial Ca(2+) Finally, in breast cancer mRNA samples, a positive correlation of MCU expression with HIF-1α signaling route is present. Our results indicate that MCU plays a central role in TNBC growth and metastasis formation and suggest that mitochondrial Ca(2+) uptake is a potential novel therapeutic target for clinical intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app