Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrochemiluminescence of Supramolecular Nanorods and Their Application in the "On-Off-On" Detection of Copper Ions.

In this work, an "on-off-on" switch system has been successfully applied through the construction of an electrochemiluminscent biosensor for copper ion (Cu(2+) ) detection based on a new electrochemiluminescence (ECL) emitter of supramolecular nanorods, which was achieved through supramolecular interactions between 3,4,9,10-perylenetetracarboxylic acid (PTCA) and aniline. The initial "signal-on" state with strong and stable ECL emission was obtained by use of the supramolecular nanorods with a new signal amplification strategy involving a co-reaction accelerator. In addition, ECL quencher probes (Fc-NH2 /Cu-Sub/nano-Au) were fabricated by immobilizing aminoferrocene (Fc-NH2 ) on Cu-substrate strand modified Au nanoparticles. The quencher probes were hybridized with the immobilized Cu-enzyme strand to form Cu(2+) -specific DNAzyme. Similarly, the "signal-off" state was obtained by the high quenching effect of Fc-NH2 on the ECL of the excited-state PTCA ((1) PTCA*). As expected, the second "switch-on" state could achieved by incubating with the target Cu(2+) , owing to the Cu(2+) -specific DNAzyme, which was irreversibly cleaved, resulting in the release of the quencher probes from the sensor interface. Herein, on the basis of the ECL intensity changes (ΔIECL ) before and after incubating with the target Cu(2+) , the prepared Cu(2+) -specific DNAzyme-based biosensor was used for the determination of Cu(2+) concentrations with high sensitivity, excellent selectivity, and good regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app