Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau.

BACKGROUND: The Loess Plateau, an ecologically vulnerable region, has long been suffering from serious soil erosion. Revegetation has been implemented to control soil erosion and improve ecosystems in the Loess Plateau region through a series of ecological recovery programs. However, the increasing atmospheric CO₂ as a result of human intervention is affecting the climate by global warming, resulting in the greater frequency and intensity of extreme weather events, such as storms that may weaken the effectiveness of revegetation and cause severe soil erosion. Most research to date has evaluated the effectiveness of revegetation on soil properties and soil erosion of different land use or vegetation types. Here, we study the effect of revegetation on soil organic carbon (SOC) storage and erosion-induced carbon loss related to different plant communities, particularly under extreme rainstorm events.

MATERIALS AND METHODS: The erosion-pin method was used to quantify soil erosion, and soil samples were taken at soil depths of 0-5 cm, 5-10 cm and 10-20 cm to determine the SOC content for 13 typical hillside revegetation communities in the year of 2013, which had the highest rainfall with broad range, long duration and high intensity since 1945, in the Yanhe watershed.

RESULTS AND DISCUSSION: The SOC concentrations of all plant communities increased with soil depth when compared with slope cropland, and significant increases (p < 0.05) were observed for most shrub and forest communities, particularly for natural ones. Taking the natural secondary forest community as reference (i.e., soil loss and SOC loss were both 1.0), the relative soil loss and SOC loss of the other 12 plant communities in 2013 ranged from 1.5 to 9.4 and 0.30 to 1.73, respectively. Natural shrub and forest communities showed greater resistance to rainstorm erosion than grassland communities. The natural grassland communities with lower SOC content produced lower SOC loss even with higher soil loss, natural secondary forest communities produced higher SOC loss, primarily because of their higher SOC content, and the artificial R. pseudoacacia community with greater soil loss produced higher SOC loss.

CONCLUSIONS: These results indicate that natural revegetation is more effective in enhancing SOC storage and reducing soil erosion than artificial vegetative recovery on hillsides. However, natural secondary forest communities, with higher SOC content and storage capacity, may also contribute to larger SOC loss under extreme rainstorms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app