Add like
Add dislike
Add to saved papers

Three-dimensional finite element analysis of the stress distribution in the endodontically treated maxillary central incisor by glass fiber post and dentin post.

INTRODUCTION: From the point of dental practice, the restoration of endodontically treated teeth has become an important aspect as it involves a range of treatment options of variable complexity. Restoring teeth with insufficient coronal tooth structure, it is always indicated to use the post to retain a core for definitive restoration. Fiber post has a modulus of elasticity in analogs to dentin structure, thus reducing the stress areas at the dowel dentin interface. However, the only material that can substantiate all these properties can be none other than dentin itself.

MATERIALS AND METHODOLOGY: Three-dimensional (3D) models of the maxillary central incisor were developed incorporating all the nonlinearities. Continuum 3D elements were used in three dimensions. Maxillary central incisor was laser scanned, duplicated with the help of reverse engineering into STL format, and it was converted into 3D model for finite element analysis (FEA). For the model, fixed boundary conditions were applied at the outer bone, while 100 N static vertical occlusal loads were prescribed at 135° on the loading component of the simulated tooth. The stress distribution was evaluated using dentin and fiber post with prescribed materials, loading and boundary conditions in endontically treated teeth by 3D FEA.

RESULTS: The analysis for von Misses stress for dentin post showed that the stress in the dentin post at the cervical area was 127 MPa. The displacement in the dentin post was <0.025 mm. Von Misses stress for the fiber post at the cervical area was approximately 182 MPa and the displacement was <0.035 mm.

CONCLUSION: The FEA results showed that the stress in the cervical area of the dentin was more for fiber post when compared to dentin post, and maximum displacement values were less for dentin post in comparison to fiber post.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app