Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression.

Cell Reports 2016 May 11
Loss of minichromosome maintenance protein 10 (Mcm10) causes replication stress. We uncovered that S. cerevisiae mcm10-1 mutants rely on the E3 SUMO ligase Mms21 and the SUMO-targeted ubiquitin ligase complex Slx5/8 for survival. Using quantitative mass spectrometry, we identified changes in the SUMO proteome of mcm10-1 mutants and revealed candidates regulated by Slx5/8. Such candidates included subunits of the chromosome passenger complex (CPC), Bir1 and Sli15, known to facilitate spindle assembly checkpoint (SAC) activation. We show here that Slx5 counteracts SAC activation in mcm10-1 mutants under conditions of moderate replication stress. This coincides with the proteasomal degradation of sumoylated Bir1. Importantly, Slx5-dependent mitotic relief was triggered not only by Mcm10 deficiency but also by treatment with low doses of the alkylating drug methyl methanesulfonate. Based on these findings, we propose a model in which Slx5/8 allows for passage through mitosis when replication stress is tolerable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app