JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Alcohol-free fermented blueberry-blackberry beverage phenolic extract attenuates diet-induced obesity and blood glucose in C57BL/6J mice.

The aim of this study was to determine the potential of phenolic compounds from a fermented blackberry-blueberry beverage to reduce diet-induced obesity and hyperglycemia in mice fed a 60% high-fat diet (HFD) for 10weeks after 1week of pretreatment. C57BL/6J mice were randomized into six groups and allowed to drink (ad libitum) an alcohol-free blackberry-blueberry beverage [alcohol-free fermented beverage (AFFB), 8.4mg anthocyanin (ANC)/kg body weight (BW)/day]; three doses of a phenolic extract [postamberlite extract (PAE)] from AFFB at 0.1×, 1× and 2× ANC concentrations; sitagliptin (hypoglycemic positive control); or water (negative control). Weight and fat mass gain were attenuated in mice receiving the highest doses of PAE (18.9mg ANC/kg BW/day, P<.05). There were also reductions (P<.05) in percent fat mass, epididymal fat pad weights, mean adipocyte diameters and plasma triglycerides and cholesterol associated with PAE treatments. By the end of the study, fasting blood glucose for mice receiving 9mg (1×) or 18.9mg (2×) ANC/kg BW/day was significantly lower than in the water and the sitagliptin groups (P<.05). Histological and histochemical analyses revealed an unexpected change in liver of mice fed ANC at 1× or 2× doses consisting of liver enlargement and increased lipid deposition. PAE also induced the most differential gene expression changes, including highly significant downstream effects at all doses to reduce d-glucose concentrations. Overall, phenolic compounds from the fermented blueberry-blackberry beverage had an impact to attenuate the development of obesity and fasting blood glucose in C57BL/6J mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app