Add like
Add dislike
Add to saved papers

The effects of Micro-429 on inhibition of cervical cancer cells through targeting ZEB1 and CRKL.

MicroRNA-429 (miR-429) has been suggested to inhibit epithelial-mesenchymal transition (EMT), mainly due to targeting of ZEB1 and ZEB2, which are repressors of the cell to cell contact protein, E-cadherin. In this study, we indicated that regulation of miR-429 in cervical cancer cells modulates cell migration, elongation, as well as transforming growth factor β (TGF-β)-induced stress fiber formation through regulating the cytoskeleton reorganization which is likely independent of the zinc finger E-box binding homeobox (ZEB)/E-cadherin axis. ZEB1 and Crk-like adapter protein (CRKL), as novel targets of miR-429 and direct regulators of the actin cytoskeleton were identified. Remarkably, expression levels of ZEB1 and CRKL were inversely associated with the level of miR-429 in cervical cancer cell lines. In addition, individual knockdown and over-expression of these targeting genes phenocopied the roles of miR-429 over-expression and inhibition on cell elongation, migration, stress fiber formation, and invasion. Targeting of ZEB1 by miR-429 led to a decreased expression and transcriptional activity of CRB3, regulated by interference with the translocation of the CRB3. This finally led to decreasing of the expression of Crumbs 3 (CRB3), which is needed for the formation of stress fiber and contractility. Therefore, miR-429 affects cervical cancer by modulating some EMT-related processes. And in this study, evidences were provided to support a role for miR-429 as a novel target suppressing invasion and migration of human cervical cancer cells through modulation of its targeting genes ZEB1 and CRKL. Taken together, our data indicate that miR-429 plays a pivotal role in cervical cancer progression, which is a potential therapeutic target for patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app