JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dissection of the contributions of cyclophilin genes to development and virulence in a fungal insect pathogen.

Cyclophilins are ubiquitous proteins found in all domains of life, catalyzing peptidyl-prolyl cis-trans isomerization (PPIase activity) and functioning in diverse cellular processes. The filamentous insect pathogenic fungus, Beauveria bassiana, contains 11 cyclophilin genes whose roles were probed via individual gene knockouts, construction of over-expression strains, and a simultaneous gene knockdown strategy using tandem SiRNA. Mutants were examined for effects on conidiation, hyphal growth, cyclosporine and stress resistance, and insect virulence. BbCypA was found to be the most highly expressed cyclophilin during growth and purified recombinant BbCypA displayed cyclosporine sensitive PPIase activity. Except for ΔBbCypA, targeted gene knockouts or overexpression of any cyclophilin resulted in temperature sensitivity (TS). Specific cyclophilin mutants showed impaired hyphal growth and differential effects on conidiation and cyclosporine resistance. Insect bioassays revealed decreased virulence for two cyclophilins (ΔBbCypE and ΔBbCyp6) and the simultaneous gene knockdown mutant constructs (SiRNA30). The BbSiRNA30 strains were unaffected in growth, conidiation, or under osmotic or cell wall perturbing stress, but did show increased resistance to cyclosporine and a TS phenotype. These results revealed common and unique roles for cyclophilins in B. bassiana and validate a method for examining the effects of multi-gene families via simultaneous gene knockdown.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app