JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Encapsulation of single cells into monodisperse droplets by fluorescence-activated droplet formation on a microfluidic chip.

Talanta 2016 June 2
Random compartmentalization of cells by common droplet formation methods, i.e., T-junction and flow-focusing, results in low occupancy of droplets by single cells. To resolve this issue, a fluorescence-activated droplet formation method was developed for the on-command generation of droplets and encapsulation of single cells. In this method, droplets containing one cell were generated by switching on/off a two-phase hydrodynamic gating valve upon optical detection of single cells. To evaluate the developed method, flow visualization experiments were conducted with fluorescein. Results indicated that picoliter droplets of uniform sizes (RSD<4.9%) could be generated. Encapsulation of single fluorescent polystyrene beads demonstrated an average of 94.3% droplets contained one bead. Further application of the developed methods to the compartmentalization of individual HeLa cells indicated 82.5% occupancy of droplets by single cells, representing a 3 fold increase in comparison to random compartmentalization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app