Add like
Add dislike
Add to saved papers

Three-dimensional quantification of myocardial perfusion during regadenoson stress computed tomography.

BACKGROUND: There is no accepted methodology for CT-based vasodilator stress myocardial perfusion imaging and analysis. We developed a technique for quantitative 3D analysis of CT images, which provides several indices of myocardial perfusion. We sought to determine the ability of these indices during vasodilator stress to identify segments supplied by coronary arteries with obstructive disease and to test the accuracy of the detection of perfusion abnormalities against SPECT.

METHODS: We studied 93 patients referred for CT coronary angiography (CTCA) who underwent regadenoson stress. 3D analysis of stress CT images yielded segmental perfusion indices: mean X-ray attenuation, severity of defect and relative defect volume. Each index was averaged for myocardial segments, grouped by severity of stenosis: 0%, <50%, 50-70%, and >70%. Objective detection of perfusion abnormalities was optimized in 47 patients and then independently tested in the remaining 46 patients.

RESULTS: CTCA depicted normal coronary arteries or non-obstructive disease in 62 patients and stenosis of >50% in 31. With increasing stenosis, segmental attenuation showed a 7% decrease, defect severity increased 11%, but relative defect volume was 7-fold higher in segments with obstructive disease (p<0.001). In the test group, detection of perfusion abnormalities associated with stenosis >50% showed sensitivity 0.78, specificity 0.54, accuracy 0.59. When compared to SPECT in a subset of 21 patients (14 with abnormal SPECT), stress CT perfusion analysis showed sensitivity 0.79, specificity 0.71, accuracy 0.76.

CONCLUSIONS: 3D analysis of vasodilator stress CT images provides quantitative indices of myocardial perfusion, of which relative defect volume was most robust in identifying segments supplied by arteries with obstructive disease. This study may have implications on how CT stress perfusion imaging is performed and analyzed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app