Add like
Add dislike
Add to saved papers

Decellularized ovine arteries as biomatrix scaffold support endothelial of mesenchymal stem cells.

Heart and Vessels 2016 November
The differentiation rate of adipose-derived mesenchymal stem cells (Ad-MSCs) into endothelial cells is always lower under normal condition, which limits further clinical application of Ad-MSCs for angiogenesis regenerative medicine and needs to be enhanced. In the present study, the tissue-specific-derived decellularized ovine arteries matrix (DCS) was used as scaffold to investigate the pro-endothelial differentiation ability of decellularized ovine arteries matrix as well as the underlying mechanisms. The prepared decellularized ovine arteries matrix by the combination of enzymatic and chemical decellularization approaches preserved macroscopic 3D architecture, native composition and ultrastructure of natural ovine arteries. The RT-PCR, histopathological and immunofluorescence assay results suggested that DCS could increase the proliferation ability of MSC. What's more, the DCS could also induce the endothelial differentiation of MSC, which was further enhanced by adding VEGF. Our results showed that natural 3D matrix from decellularized ovine arteries could induce the endothelial differentiation of AD-MSCs alone or with the combination of VEGF. Our results indicated that the decellularized ovine arteries matrix would serve as an efficient culture system for promoting endothelial differentiation of Ad-MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app