Journal Article
Review
Add like
Add dislike
Add to saved papers

Definitions of Normal Liver Fat and the Association of Insulin Sensitivity with Acquired and Genetic NAFLD-A Systematic Review.

Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of disease ranging from simple steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) and fibrosis. "Obese/Metabolic NAFLD" is closely associated with obesity and insulin resistance and therefore predisposes to type 2 diabetes and cardiovascular disease. NAFLD can also be caused by common genetic variants, the patatin-like phospholipase domain-containing 3 (PNPLA3) or the transmembrane 6 superfamily member 2 (TM6SF2). Since NAFL, irrespective of its cause, can progress to NASH and liver fibrosis, its definition is of interest. We reviewed the literature to identify data on definition of normal liver fat using liver histology and different imaging tools, and analyzed whether NAFLD caused by the gene variants is associated with insulin resistance. Histologically, normal liver fat content in liver biopsies is most commonly defined as macroscopic steatosis in less than 5% of hepatocytes. In the population-based Dallas Heart Study, the upper 95th percentile of liver fat measured by proton magnetic spectroscopy (¹H-MRS) in healthy subjects was 5.6%, which corresponds to approximately 15% histological liver fat. When measured by magnetic resonance imaging (MRI)-based techniques such as the proton density fat fraction (PDFF), 5% macroscopic steatosis corresponds to a PDFF of 6% to 6.4%. In contrast to "Obese/metabolic NAFLD", NAFLD caused by genetic variants is not associated with insulin resistance. This implies that NAFLD is heterogeneous and that "Obese/Metabolic NAFLD" but not NAFLD due to the PNPLA3 or TM6SF2 genetic variants predisposes to type 2 diabetes and cardiovascular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app