JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Attenuated PGC-1α Isoforms following Endurance Exercise with Blood Flow Restriction.

INTRODUCTION: Exercise performed with blood flow restriction simultaneously enhances the acute responses to both myogenic and mitochondrial pathways with roles in training adaptation. We investigated isoform-specific gene expression of the peroxisome proliferator-activated receptor gamma coactivator 1 and selected target genes and proteins regulating skeletal muscle training adaptation.

METHODS: Nine healthy, untrained males participated in a randomized, counterbalanced, crossover design in which each subject completed a bout of low-intensity endurance exercise performed with blood flow restriction (15 min cycling at 40% of V˙O2peak, BFR-EE), endurance exercise (30 min cycling at 70% of V˙O2peak, EE), or resistance exercise (4 × 10 repetitions of leg press at 70% of one-repetition maximum) separated by at least 1 wk of recovery. A single resting muscle biopsy (vastus lateralis) was obtained 2 wk before the first exercise trial (rest) and 3 h after each bout.

RESULTS: Total PGC-1α mRNA abundance, along with all four isoforms, increased above rest with EE only (P < 0.05) being higher than BFR-EE (P < 0.05). PGC-1α1, 2, and 4 were higher after EE compared with resistance exercise (P < 0.05). EE also increased vascular endothelial growth factor, Hif-1α, and MuRF-1 mRNA abundance above rest (P < 0.05), whereas COXIV mRNA expression increased with EE compared with BFR-EE (P < 0.05).

CONCLUSION: The attenuated expression of all four PGC-1α isoforms when EE is performed with blood flow restriction suggests this type of exercise provides an insufficient stimulus to activate the signaling pathways governing mitochondrial and angiogenesis responses observed with moderate- to high-intensity EE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app