Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.

For small mammals living at high altitude, aerobic heat generation (thermogenesis) is essential for survival during prolonged periods of cold, but is severely impaired under conditions of hypobaric hypoxia. Recent studies in deer mice (Peromyscus maniculatus) reveal adaptive enhancement of thermogenesis in high- compared to low-altitude populations under hypoxic cold stress, an enhancement that is attributable to modifications in the aerobic metabolism of muscles used in shivering. However, because small mammals rely heavily on nonshivering mechanisms for cold acclimatization, we tested for evidence of adaptive divergence in nonshivering thermogenesis (NST) under hypoxia. To do so, we measured NST and characterized transcriptional profiles of brown adipose tissue (BAT) in high- and low-altitude deer mice that were (i) wild-caught and acclimatized to their native altitude, and (ii) born and reared under common garden conditions at low elevation. We found that NST performance under hypoxia is enhanced in wild-caught, high-altitude deer mice, a difference that is associated with increased expression of coregulated genes that influence several physiological traits. These traits include vascularization and O2 supply to BAT, brown adipocyte proliferation and the uncoupling of oxidative phosphorylation from ATP synthesis in the generation of heat. Our results suggest that acclimatization to hypoxic cold stress is facilitated by enhancement of nonshivering heat production, which is driven by regulatory plasticity in a suite of genes that influence intersecting physiological pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app