Add like
Add dislike
Add to saved papers

Manganese exposure disrupts SNARE protein complex-mediated vesicle fusion in primary cultured neurons.

Overexposure to manganese (Mn) has been known to disrupt neurotransmitter release in the brain. However, the underlying mechanisms of Mn exposure on neurotransmitter vesicle release are still unclear. The current study investigated whether the protein expression and their interaction of SNARE complex associated proteins were the media between Mn exposure and neurotransmitter vesicle fusion disorders. After the neurons were respectively exposed to Mn (0-200 μM) for 0, 6, 12, 18, 24 h, there were different degrees of cell injury in neurons. According to the results, Mn exposures in subsequent experiments were restricted to concentrations of 100 μM for 0, 6, 12, 18, 24 h. Mn was found to down-regulate the expression of SNAP-25 and up-regulate the expression of VAMP-2 in cultured neurons. Moreover, the interaction of Munc 18 and Syntaxin increased significantly in response to Mn treatment for 18-24h, and the interaction of VAMP-2 and Synaptophysin increased first and then decreased. FM1-43-labeled synaptic vesicles also provided evidence that the treatment with Mn resulted in neurotransmitter vesicle fusion increasing first and then decreasing, which was consistent with the 80 kDa protein levels of SNARE complexes. The findings clearly demonstrated that Mn induced the disorders of neurotransmitter vesicle release via disturbing the protein expression and their interaction of SNARE complex associated proteins. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 705-716, 2017.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app