Add like
Add dislike
Add to saved papers

Autologous plasma and its supporting role in fat graft survival: A relevant vector to counteract resorption in lipofilling.

Fat grafting has become a widespread technique for different reconstructive and esthetic purposes. However, the disadvantage of fat grafting is the unpredictable resorption rate that often necessitates repetitive procedures, which in turn may have an impact on the morbidity. During the immediate, post-graft, ischemic period, cells survive due to the process of plasmatic imbibition. This biological phenomenon precedes the ingrowth of neo-capillaries that eventually nourish the graft and help establish a long-term homeostatic equilibrium. Both partners, the graft and the recipient bed, contribute to the revascularization process. Hypothetically, enrichment of the recipient site with autologous plasma could have a beneficial role to enhance fat graft survival. We investigated whether plasma supported the viability of the lipoaspirate (LA) material. Plasma was isolated from blood samples collected from eight patients during the elective lipofilling procedures. An in vitro study assessed the viability of LA cells using plasma as a culture medium compared to the traditional culture media. In vitro analysis confirmed sustained viability of LA cells compared to the standard media and control media during 7 consecutive days. The behavior of the fat grafts in plasma showed similarities with those incubated in the traditional culture media. In future, these findings could be translated to a clinical setting. Plasma is the only autologous substrate available in large quantities in the human body. The addition of the supporting agents, such as plasma, could contribute to a better graft survival with more stable clinical outcomes in the long term. The rationale behind the technique is based on the phenomenon of plasmatic imbibition and the reasoning that the extracellular matrix plays a pivotal role in cellular survival.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app