Add like
Add dislike
Add to saved papers

Functional Single Nucleotide Polymorphisms (SNPs) in the Genes Encoding the Human Deoxyribonuclease (DNase) Family Potentially Relevant to Autoimmunity.

OBJECTIVE: To continue our previous investigations, we have extensively investigated the function of the 61, 41, and 35 non-synonymous single nucleotide polymorphisms (SNPs) in the human genes encoding DNASE1, DNASE1L3, and DNASE2, respectively, potentially relevant to autoimmune diseases.

METHODS: The site-directed mutagenesis was employed to amino acid-substituted constructs corresponding to each SNP. The COS-7 cells were transfected with each vector and DNase activity was assayed by the single radial enzyme diffusion method. By using PolyPhen-2, changes in the DNase function of each non-synonymous SNP were predicted. Genotyping of all the non-synonymous SNPs was performed in 14 different populations including 3 ethnic groups using the polymerase chain reaction followed by the restriction fragment length polymorphism method.

RESULTS: Expression analysis demonstrated these SNPs to be classified into four categories with regard to the effect on DNase activity: SNPs not affecting the activity level, ones reducing it, ones abolishing it, and ones elevating it. In particular, 9, 5, and 4 SNPs producing a loss-of-function variant of the enzymes in DNASE1, DNASE1L3, and DNASE2, respectively, were confirmed. SNPs producing DNase loss of function can be estimated by PolyPhen-2 to be "probably damaging" with a high accuracy of prediction. Almost all of these functional SNPs producing a loss of function or substantially low activity-harboring forms exhibited a mono-allelic distribution in all of the populations.

CONCLUSION: A minor allele of functional SNPs, despite the remarkably low genetic heterogeneity of the SNPs, might be a genetic risk factor for autoimmune diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app