Add like
Add dislike
Add to saved papers

Selective Role of Vinculin in Contractile Mechanisms of Endothelial Permeability.

Increased vascular endothelial cell (EC) permeability is a result of intercellular gap formation that may be induced by contraction-dependent and contraction-independent mechanisms. This study investigated a role of the adaptor protein vinculin in EC permeability induced by contractile (thrombin) and noncontractile (IL-6) agonists. Although thrombin and IL-6 caused a similar permeability increase in human pulmonary ECs and disrupted the association between vinculin and vascular endothelial-cadherin, they induced different patterns of focal adhesion (FA) arrangement. Thrombin, but not IL-6, caused formation of large, vinculin-positive FAs, phosphorylation of FA proteins, FA kinase and Crk-associated substrate, and increased vinculin-talin association. Thrombin-induced formation of talin-positive FA and intercellular gaps were suppressed in ECs with small interfering RNA-induced vinculin knockdown. Vinculin knockdown and inhibitors of Rho kinase and myosin-II motor activity also attenuated thrombin-induced EC permeability. Importantly, ectopic expression of the vinculin mutant lacking the F-actin-binding domain decreased thrombin-induced Rho pathway activation and EC permeability. In contrast, IL-6-induced EC permeability did not involve RhoA- or myosin-dependent mechanisms but engaged Janus kinase/signal transducer and activator of transcription-mediated phosphorylation and internalization of vascular endothelial-cadherin. This process was vinculin independent but Janus kinase/tyrosine kinase Src-dependent. These data suggest that vinculin participates in a contractile-dependent mechanism of permeability by integrating FA with stress fibers, leading to maximal RhoA activation and EC permeability response. Vinculin inhibition does not affect contractile-independent mechanisms of EC barrier failure. This study provides, for the first time, a comparative analysis of two alternative mechanisms of vascular endothelial barrier dysfunction and defines a specific role for vinculin in the contractile type of permeability response.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app