Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders.

In familial neurodegenerative disorders, protein aggregates form continuously because of genetic mutations that drive the synthesis of truncated or unfolded proteins. The oxidative stress imposed by neurotransmitters and environmental neurotoxins constitutes an additional threat to the folding of the proteins and the integrity of organelle membranes in neurons. Failure in degrading such altered materials compromises the function of neurons and eventually leads to neurodegeneration. The lysosomal proteolytic enzyme Cathepsin D is the only aspartic-type protease ubiquitously expressed in all the cells of the human body, and it is expressed at high level in the brain. In general, cathepsin D mediated proteolysis is essential to neuronal cell homeostasis through the degradation of unfolded or oxidized protein aggregates delivered to lysosomes via autophagy or endocytosis. More specifically, many altered neuronal proteins that hallmark neurodegenerative diseases (e.g., the amyloid precursor, α-synuclein, and huntingtin) are physiologic substrates of cathepsin D and would abnormally accumulate if not efficiently degraded by this enzyme. Furthermore, experimental evidence indicates that cathepsin D activity is linked to the metabolism of cholesterol and of glycosaminoglycans, which accounts for its involvement in neuronal plasticity. This review focuses on the unique role of cathepsin D mediated proteolysis in the pathogenesis of human neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app