Add like
Add dislike
Add to saved papers

In-vitro characterization of buccal iontophoresis: the case of sumatriptan succinate.

Buccal administration of sumatriptan succinate might be an interesting alternative to the present administration routes, due to its non-invasiveness and rapid onset of action, but because of its low permeability, a permeation enhancement strategy is required. The aim of this work was then to study, in-vitro, buccal iontophoresis of sumatriptan succinate. Permeation experiments were performed in-vitro across pig esophageal epithelium, a recently proposed model of human buccal mucosa, using vertical diffusion cells. The iontophoretic behavior of the tissue was characterized by measuring its isoelectric point (Na(+) transport number and the electroosmotic flow of acetaminophen determination) and by evaluating tissue integrity after current application. The results obtained confirm the usefulness of pig esophageal epithelium as an in-vitro model membrane for buccal drug delivery. The application of iontophoresis increased sumatriptan transport, proportionally to the current density applied, without tissue damage: electrotransport was the predominant mechanism. Integrating the results of the present work with literature data on the transport of other molecules across the buccal mucosa and across the skin, we can draw a general conclusion: the difference in passive transport across buccal mucosa and across the skin is influenced by permeant lipophilicity and by the penetration pathway. Finally, buccal iontophoretic administration of sumatriptan allows to administer 6mg of the drug in 1h, representing a promising alternative to the current administration routes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app