Add like
Add dislike
Add to saved papers

Slice-by-Slice Pressure-Volume Loop Analysis Demonstrates Native Differences in Regional Cardiac Contractility and Response to Inotropic Agents.

BACKGROUND: Regional changes in diastolic and systolic properties after myocardial infarction contribute to adverse left ventricular (LV) remodeling. Regional function is currently assessed using load-dependent measures such as slice ejection fraction (sEF), wall motion abnormalities, or strain imaging. However, load-independent measures of cardiac function may be useful in the study of the infarction-induced remodeling.

METHODS: In this study, we used a recently validated 2-dimensional (2D) real-time magnetic resonance imaging (MRI) technique to evaluate regional variations in load-independent slice-by-slice measures of systolic and diastolic function and compared the values to a load-dependent measure in 11 sheep at rest and during inotropic agent infusion.

RESULTS: Slice-derived ejection fraction (sEF) was greater in the apex relative to the midventricular and basal regions, and inotropic infusion increased sEF in the base more than in the apex and midventricle. Slice-derived ESPVR (sESPVR) in the apex was significantly lower than in the midventricle and the base, and inotropic infusion increased sESPVR in the apical slices more than in the midventricle. Similarly, slice-derived volume-axis intercept V0 (sV0) was higher in the base relative to the midventricle and apex. sEDPVR did not demonstrate significant regional variations, but inotropic infusion resulted in a small increase in the apex.

CONCLUSIONS: In conclusion, acquisition of slice-derived load-independent measures demonstrated variations that contradict those observed with load-dependent sEF. The approach may provide advanced slice-based measures of function during the LV remodeling process and aid in the development of therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app